ACM集训题
Let me alone.
题目 |
---|
gcd变化次数, https://ac.nowcoder.com/acm/contest/69791/F |
线段树二分, 理解01排序,https://www.luogu.com.cn/problem/P2824 |
2023ccpc桂林C, 线性基, https://codeforces.com/gym/104768/problem/C |
https://ac.nowcoder.com/acm/contest/95323/K |
基环树 https://www.luogu.com.cn/problem/P1399 |
2023ccpc桂林I https://codeforces.com/gym/104768/problem/I |
2023ccpc桂林H https://codeforces.com/gym/104768/problem/H |
2023icpc桂林J https://codeforces.com/gym/104768/problem/J |
牛客 基础算法班 |
GCD 的变化次数
注意到的性质:gcd(x, y) <= min(x,y) → gcd(x,y) <= x / 2
相当于 GCD 要不不变,要不变小 1/2 O(log(n))
对于一个子序列的 最大公约数(GCD),可以认定这个 最大公约数的 可能性是可以枚举的。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
using namespace std;
const int N = 6e5 + 10;
vector<pair<int, int>> pos[N];
void build(vector<int>& a){
int n = a.size() - 1;
pos[1].push_back({1,a[1]});
for(int i = 2; i <= n; i++){
pos[i].push_back({i,a[i]});
int t = a[i];
for(auto [x,y] : pos[i - 1]){
int now = gcd(t,y);
if(t != now){
pos[i].push_back({x,now});
t = now;
}
}
}
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, m;
cin >> n >> m;
vector<int> a(n + 1);
for(int i = 1; i <= n; i++) cin >> a[i];
build(a);
while(m --){
int l, r;
cin >> l >> r;
int ans = 0;
for(auto [x,y]: pos[r]){
if(x >= l){
ans += 1;
}else break;
}
cout << ans << "\n";
}
}